
W[2]-hardness of Constrained Profile Scheduling

Jiehua Chen1 Danny Hermelin2 Matthias Mnich3

Manuel Sorge1

1University of Warsaw, Warsaw, Poland
1{jiehua.chen2,manuel.sorge}@gmail.com

2Ben-Gurion University of the Negev, Beer Sheva, Israel
2hermelin@bgu.ac.il

3University of Bonn, Bonn, Germany
3mmnich@uni-bonn.de

March 4, 2019

In this paper, we correct some index typos of the proof for the following W[2]-hardness prob-
lem [1].

Constrained Profile Scheduling

Input: A set T of unit length tasks, a partial order on ≺ on T , a deadline ∆ ∈ N+, and
a number m ∈ N of machines.

Question: Is there a mapping f : T → {1, 2, . . . ,∆} such that
1. for each two distinct tasks t, t′ ∈ T with t ≺ t′ it holds that f(t) < f(t′), and
2. for each time i ∈ {1, 2, . . . ,∆} it holds that |f−1(i)| ≤ m?

A mapping f : T → {1, 2, . . . ,∆} for a set T of task is called a schedule, and it is called a feasible
schedule if it satisfies the two constraints above. Accordingly, we say that a task i ∈ T is scheduled
at time slot f(i).

Theorem 1. Parameterized by the number m of machines, Constrained Profile Scheduling
is W[2]-hard.

Proof. We reduce from the W[2]-hard Dominating Set problem, parameterized by the size of the
dominating set. Let (G = (V,E), k) be an instance of Dominating Set with V = {v0, v1, . . . , vn−1}
being the set of vertices, E being the set of edges, and k being the size of the desired dominating
set. The vertices are indexed beginning with 0 to ease the presentation later on. Without loss of
generality, we assume that n ≥ k ≥ 1. We will construct an instance of Constrained Profile
Scheduling with m = 2 · k + 1 machines and deadline ∆ = k · n · (n2 + 1) + 2 · n. We introduce
a set T of tasks and define a directed acyclic graph on T , denoted as H = (T, F). Our precedence
constraints are the transitive closure of H. The tasks are divided into the following four parts.

The floor A. We introduce a set A of exactly ∆ floor tasks, denoted as a1, a2, . . . , a∆. We add
to F a path of length ∆− 1 on these tasks. Formally, for each i ∈ {1, . . . ,∆− 1} let (ai, ai+1) ∈ F .

Note that each feasible schedule must assign the floor tasks at distinct time slots, one after
another. The floor tasks will be used to fix the vertex tasks (defined below) at certain time slots.

1

The vertex tasks B. We introduce a set B of k ·n2 vertex tasks, that are “parallel” to the floor
tasks of some specific form. We will have k · n vertex tasks for each vertex in the input vertex set.
Formally, B = {bn+1+α·(n2+1)+i·n | 0 ≤ α ≤ k · n− 1, 0 ≤ i ≤ n− 1}. For each vertex task bx ∈ B,
we add to F the arcs (ax−1, bx) and (bx, ax+1).

Note that each vertex task bx is scheduled at time step x. This creates bottlenecks in the
processing capabilities of the machines at these time slots. These bottlenecks will be used to ensure
that one of the vertices selected by the selector tasks (defined below) will be adjacent to the vertex
corresponding to the vertex task.

The selector tasks C. For each r ∈ {1, . . . , k}, we introduce a set Cr of ∆−n+1 selector tasks,
denoted as cr,1, cr,2, . . . , cr,∆−n+1. They form the rth selector . Then, we add to F another path
of length ∆ − n consisting of the vertices in Cr. Formally, for each r and i with 1 ≤ r ≤ k and
1 ≤ i ≤ ∆− n, we add to F the arc (cr,i, cr,i+1). We let C =

⋃
1≤r≤k Cr.

Intuitively, if all selector tasks in Cr would be scheduled at consecutive time slots without gaps,
then, because there are exactly ∆ − n + 1 such vertex tasks, there would be n possible ways to
schedule them. Each of these possibilities shall correspond to a vertex that is chosen into the
dominating set by the rth selector.

The non-edge tasks D. For each r with 1 ≤ r ≤ k, we introduce a set Dr of 2 · k ·n · (
(
n
2

)
−|E|)

vertices that represent the non-edges in G and are put “parallel” to the selector tasks in Cr of
some specific form. Formally, Dr = {dr,n+1+α·(n2+1)+i·n−j | 0 ≤ α ≤ k · n − 1, 0 ≤ i, j ≤ n −
1 with {vi, vj} /∈ E}. For each dr,x ∈ Dr, we add to F two arcs (cr,x−1, dr,x) and (dr,x, cr,x+1). We
let D =

⋃
1≤r≤kDr.

Note that for each set S from the 2k + 2 sets A,B,C1, C2, . . . , Cr, D1, D2, . . . , Dr and at each
time slot z, there is at most one task from S that is scheduled at z. Our constructed instance for
Constrained Profile Scheduling is as follows I = (T,≺,∆ = k · n · (n2 + 1), 2k+ 1), where T
consists of the tasks from A∪B ∪C ∪D, and the precedence constraints ≺ is the transitive closure
of the acyclic graph (T, F) defined above. The construction can clearly be done in polynomial time.
Now we show that the input graph G admits a dominating set of size k if and only if there is a
schedule f : T → {1, 2, . . . ,∆} for all the tasks in T , which satisfies the precedence constraints ≺
and uses at most m = 2 · k + 1 machines at each time slot.

For the “only if” direction, assume that V ′ = {vq1 , vq2 , . . . , vqk} ⊆ V is a dominating set of
size k. We show that the following mapping f : T → {1, 2, . . . ,∆} is a scheduling satisfying the
conditions in the statement.

1. For each floor ai ∈ A, let f(ai) = i.
2. For each vertex task bi ∈ B, let f(bi) = i.
3. For each selector task cr,x ∈ C, let f(cr,x) = x+ qr.
4. For each non-edge task dr,x ∈ D, let f(dr,x) = x+ qr.

First, all tasks from A∪B are scheduled within deadline ∆. Second, for each cr,x ∈ C we have that
1 ≤ x ≤ ∆− n+ 1 and 0 ≤ qr ≤ n− 1. By the definition of f(cr,x), we thus have 1 ≤ f(cr,x) ≤ ∆.
Next, for each dr,x ∈ D we have that 0 ≤ qr ≤ n − 1 and, for some i, j ∈ {0, . . . , n − 1}, α ∈
{0, . . . , k · n− 1} that x = n+ 1 + α · (n2 + 1) + i · n− j and, thus,

2 ≤ x ≤ n+ 1 + (k · n− 1) · (n2 + 1) + (n− 1) · n = ∆− 2 · n.

By the definition of f(dr,x) we have 2 ≤ f(dr,x) ≤ ∆− n− 1. Further, it is easy to verify that the
mapping f satisfies the precedence constraints.

2

It remains to show that at each time slot z ∈ {1, 2, . . . ,∆}, we have |f−1(z)| ≤ 2 · k + 1. If z is
not of the form n+1+α·(n2+1)+i·n for some α ∈ {0, 1, . . . , k ·n−1} and some i ∈ {0, 1, . . . , n−1},
then bz /∈ B and thus one floor task, no vertex task, at most k selector tasks, and at most k non-edge
tasks are scheduled at time z. Thus, for such z, it holds that |f−1(z)| ≤ 2 · k + 1.

Otherwise, z = n+1+α ·(n2 +1)+ i ·n for some α ∈ {0, 1, . . . , k ·n−1} and i ∈ {0, 1, . . . , n−1}.
We distinguish between two cases, depending on whether vi is in the dominating set V ′.
Case 1: vi ∈ V ′. This means that there is an r ∈ {1, 2, . . . , k} such that i = qr. Observe that
dr,z−i = dn+1+α·(n2+1)+i·n−i does not exist in D. By the definition of f , at most k − 1 non-edge
tasks are scheduled at time z. Consequently, at most 2 · k + 1 tasks are scheduled at z, including
one floor task, one vertex task, at most k selector tasks, and at most k − 1 non-edge tasks.
Case 2: vi /∈ V ′. This means that there is an r ∈ {1, 2, . . . , k} such that {vi, vqr} ∈ E, meaning
that the task dr,z−qr does not exist. Again, by the definition of f , at most k− 1 non-edge tasks are
scheduled at z.

Before we proceed with the back direction, we first present some useful observations.

Claim 1. For each mapping f : T → {1, 2, . . . ,∆} that satisfies the precedence constraints ≺, the
following holds.

1. For each i ∈ {1, . . . , D} and each floor task ai ∈ A we have f(ai) = i, and if there is a vertex
task bi ∈ B, then f(ai) = f(bi) = i.

2. For each r ∈ {1, . . . , k} and for each selector task dr,x ∈ Dr, we have that f(cr,x) = f(dr,x).
3. For each r ∈ {1, . . . , k} and for each selector task cr,x ∈ Cr, we have that x ≤ f(cr,x) ≤

x+ n− 1.

Proof. Since there are ∆ floor tasks which form a path in the precedence constraint and since the
deadline is ∆, each floor task must obtain a unique time slot. Thus, f(ai) = i. By the precedence
constraints of bx, we can deduce that f(bi) = f(ai) = i. The second statement follows from the
precedence constraints for the non-edge tasks. The first inequality of last statement follows from
the fact that there are exactly x − 1 tasks in Cr that have to be scheduled before cr,x such that
each of them obtain a distinct time slot. The last inequality of the last statement follows from the
fact that there are ∆−n+ 1−x tasks that have to be scheduled after cr,x, sequentially and within
deadline ∆. (of Claim 1) �

From the construction of the tasks’ precedence constraints, we can deduce that there is a range
of time slots where all selector tasks are executed consecutively:

Claim 2. Let f : T → {1, 2, . . . ,∆} be a scheduling for the tasks in T that satisfies the precedence
constraints ≺. Then, there is a time slot s = n+ 1 + δ · (n2 + 1) for some δ with 0 ≤ δ ≤ k · n− 1
such that for each time slot z with z ∈ {s, s+ 1, . . . , s+ n2} and for each selector r ∈ {1, . . . , k} it
holds that f−1(z) ∩ Cr 6= ∅.

Proof. For each selector r ∈ {1, 2, . . . , k}, let Sr denote the set of integers σ where at most n2 tasks
from Cr are assigned time slots between n+ 1 + σ · (n2 + 1) and n+ 1 + σ · (n2 + 1) + n2, that is,
Sr = {σ ∈ {0, 1, . . . , k · n− 1} | ∃z ∈ {n+ 1 + σ · (n2 + 1), n+ 1 + σ · (n2 + 1) + 1, . . . , n+ 1 + σ ·
(n2 + 1) + n2} : f−1(z) ∩ Cr = ∅}. Note that the sets of jobs scheduled for σ, τ ∈ Sr, σ 6= τ , are
disjoint. Since all tasks in Cr occupy exactly ∆ − n + 1 time slots and the total number of time
slots are ∆, it follows that |Sr| ≤ n− 1. In total, |

⋃
1≤r≤k Sr| ≤ k · (n− 1) < k · n. Now, consider

an arbitrary index δ ∈ {0, 1, . . . , k · n − 1} \
(⋃

1≤r≤k Sr
)
. By the definition of Sr, for each time

slot in {n + 1 + δ · (n2 + 1), n + 1 + δ · (n2 + 1) + 1, . . . , n + 1 + δ · (n2 + 1) + n2} it holds that
|f−1(z) ∩ C| = k. (of Claim 2) �

3

We continue to show the “if” direction: Let there be a feasible schedule f : T → {1, 2, . . . ,∆}.
By Claim 2, let δ ∈ {0, 1, . . . , n− 1} \

(⋃
1≤r≤k Sr

)
and s = n+ 1 + δ · (n2 + 1) such that for each

time slot z ∈ {s, s + 1, . . . , s + n2} it holds that |f−1(z) ∩ C| = k. This means that we can find k
tasks, denoted as c1,s−q1 , c2,s−q2 , . . . , ck,s−qk , such that

∀t ∈ {0, 1, . . . , n2} : s+ t = f(c1,s−q1+t) = f(c2,s−q2+t) = · · · = f(ck,s−qk+t). (1)

By the third statement in Claim 1, we have that for each r ∈ {1, 2, . . . , k}, it holds that cr,s−qr
has a time slot s = f(cr,s−qr) between s − qr and s − qr + n − 1, implying that 0 ≤ qr ≤ n − 1.
We claim that V ′ = {vq1 , vq2 , . . . , vqk} is a dominating set for G. As already reasoned, for each
r ∈ {1, 2, . . . , k}, it holds that qr ∈ {0, 1, . . . , n− 1}.

Now, for each vertex vi ∈ V , we show that vi ∈ V ′ or vi is adjacent to a dominating vertex from
V ′. To show this, consider the specific time slot ẑ = s + i · n = n + 1 + δ · (n2 + 1) + i · n. Note
that the vertex task bẑ exists. By the first statement in Claim 1, we have that f(aẑ) = f(bẑ) = ẑ.
We claim that for each r ∈ {1, . . . , k} we have f(cr,ẑ−qr) = ẑ. To see this, note that ẑ − qr =
s − qr + i · n. By Equation 1, we deduce f(cr,ẑ−qr) = f(cr,s−qr+i·n) = s + i · n which equals ẑ
by definition. Hence, there are exactly k selector tasks from C that are scheduled at time slot ẑ,
namely c1,ẑ−q1 , c2,ẑ−q2 , . . . , cr,ẑ−qr . Consequently, there can be at most k − 1 non-edge tasks that
are scheduled at ẑ. However, by the third statement in Claim 1, each non-edge task of the form
dr,ẑ−qr would be scheduled at f(cr,ẑ−qr) = ẑ. This means that there exists a selector ` such that
d`,ẑ−q` does not exists. By the definition of ẑ and the definition of the non-edge tasks, d`,ẑ−q` does
not exists if only if i = q` or {vi, v`}. In the first case vi belongs to V ′, and in the second case vi is
adjacent to some vertex in V ′. Hence, V ′ is a dominating set of G.

References

[1] H. L. Bodlaender and M. R. Fellows. W[2]-hardness of precedence constrained k-processor
scheduling. Operations Research Letters, 18(2):93–97, 1995. → p. 1.

4

