Matchings under Preferences: Strength of Stability and Trade-Offs

Jiehua Chen Piotr Skowron Manuel Sorge

June 25th 2019

20th ACM Conference on Economics and Computation

Input: A preference profile with two sets B, G of agents. Each agent has preferences over the agents in the other set.

Input: A preference profile with two sets B, G of agents. Each agent has preferences over the agents in the other set.

```
      1 : abc
      a : 2 1 3

      2 : bGa
      b : 3 2 1

      3 : Gab
      G : 1 3 2
```

Preference: Strict order \succ over subset of B or G

Input: A preference profile with two sets *B*, *G* of agents.

Each agent has preferences over the agents in the other set.

```
1: abc a: 2 1 3
2: bca b: 3 2 1
3: cab c: 1 3 2
rank 0 rank 1 rank 2
```

Preference: Strict order \succ over subset of B or G

Input: A preference profile with two sets *B*, *G* of agents.

Each agent has preferences over the agents in the other set.

Preference: Strict order \succ over subset of B or G

Input: A preference profile with two sets B, G of agents. Each agent has preferences over the agents in the other set.

Preference: Strict order \succ over subset of B or G

Question: Is there a stable matching?

Input: A preference profile with two sets *B*, *G* of agents.

Each agent has preferences over the agents in the other set.

Preference: Strict order \succ over subset of B or G

Question: Is there a stable matching?

Input: A preference profile with two sets *B*, *G* of agents.

Each agent has preferences over the agents in the other set.

Preference: Strict order ≻ over subset of *B* or *G*

Question: Is there a stable matching?

Input: A preference profile with two sets *B*, *G* of agents.

Each agent has preferences over the agents in the other set.

Preference: Strict order \succ over subset of B or G

Question: Is there a stable matching?

Input: A preference profile with two sets *B*, *G* of agents.

Each agent has preferences over the agents in the other set.

Preference: Strict order \succ over subset of B or G

Question: Is there a stable matching?

Stability: Qualitative vs. Quantitative

Matching stable

Stability: Qualitative vs. Quantitative

Stability: Qualitative vs. Quantitative

Scenario 1: Agents' preferences are not quite accurate.

Scenario 1: Agents' preferences are not quite accurate.

Scenario 2: Agents' preferences change over time.

Scenario 1: Agents' preferences are not quite accurate.

Scenario 2: Agents' preferences change over time.

→ Aim: Stable matching in all nearby profiles

Scenario 1: Agents' preferences are not quite accurate.

Scenario 2: Agents' preferences change over time.

Distance measure: A swap is the operation of switching two consecutive agents in a preference list.

Scenario 1: Agents' preferences are not quite accurate.

Scenario 2: Agents' preferences change over time.

→ Aim: Stable matching in all nearby profiles

Distance measure: A swap is the operation of switching two consecutive agents in a preference list.

 \rightsquigarrow

Definition (Robust Matching)

Let $d \in \mathbb{N}$. A matching M for a profile P is d-robust if M is stable in each profile Q that is at most d swaps away from P.

A matching M for a profile P is d-robust if M is stable in each profile Q that is at most d swaps away from P.

A matching M for a profile P is d-robust if M is stable in each profile Q that is at most d swaps away from P.

Theorem

In $O(n^4)$ time we can compute a d-robust matching or correctly report that there is none. (n = number of agents)

A matching M for a profile P is d-robust if M is stable in each profile Q that is at most d swaps away from P.

Theorem

In $O(n^4)$ time we can compute a d-robust matching or correctly report that there is none. (n = number of agents)

Proof outline

• $O(n^d)$ profiles $\rightsquigarrow O(n^4)$ critical profiles

A matching M for a profile P is d-robust if M is stable in each profile Q that is at most d swaps away from P.

Theorem

In $O(n^4)$ time we can compute a d-robust matching or correctly report that there is none. (n = number of agents)

Proof outline

- $O(n^d)$ profiles $\rightsquigarrow O(n^4)$ critical profiles
- Modify rotation poset: add info from critical profiles

A matching M for a profile P is d-robust if M is stable in each profile Q that is at most d swaps away from P.

Theorem

In $O(n^4)$ time we can compute a d-robust matching or correctly report that there is none. (n = number of agents)

Proof outline

- $O(n^d)$ profiles $\rightsquigarrow O(n^4)$ critical profiles
- Modify rotation poset: add info from critical profiles
- Find closed subset of rotations in modified rotation poset

Fix matching M that is not d-robust.

Fix matching M that is not d-robust.

Profile
$$P$$
 $\leq d$ swaps $\leq d$ swaps $\leq d$ waps $\leq d$ with $\leq d$ with $\leq d$ $\leq d$ waps $\leq d$ with $\leq d$ $\leq d$ swaps $\leq d$ with $\leq d$ swaps $\leq d$ with $\leq d$ $\leq d$ swaps $\leq d$ with $\leq d$ swaps \leq

Blocking pair $\{u, v\}$ for M in Q:

Fix matching M that is not d-robust.

Blocking pair $\{u, v\}$ for M in Q:

Fix matching M that is not d-robust.

Blocking pair $\{u, v\}$ for M in Q:

Critical profile R: Move only v, u before M(u), M(v), respectively.

Fix matching M that is not d-robust.

Blocking pair $\{u, v\}$ for M in Q:

Critical profile R: Move only v, u before M(u), M(v), respectively.

Observation: M is d-robust iff M is stable in each critical profile.

Fix matching M that is not d-robust.

Profile
$$P$$
 $\leq d$ swaps $\leq d$ waps $\leq d$ wa

Blocking pair $\{u, v\}$ for M in Q:

Critical profile R: Move only v, u before M(u), M(v), respectively.

Observation: M is d-robust iff M is stable in each critical profile.

After $O(n^4)$ -time preprocessing, testing whether two pairs together in stable matching can be done in O(1) time. [Gusfield, Irving '89]. ^{7/}

Primer on Rotations

- 1 · bcad
- 2 : **c**dba
- 3: dacb
- 4: abdc

- a : 1 2 3 4
- **b**: 2 3 4 1
- **G**: 3 4 1 2
- d: 4 1 2 3

Primer on Rotations

- 1 : **b G a d**
- 2 : **cdba**
- 3 dacb
- 4: abdc

- a : 1 2 3 4
- **b**: 2 3 4 1
- **C**: **3** 4 **1** 2
- d: 4 1 2 3

Primer on Rotations

- 1 boad
- 2 : **Cdba**
- 3 dacb
- 4 : **a**bdc

- a: 1 2 3 4
- **b**: 2 3 4 1
- d: 4 1 2 3

- 1 : 6 Cad
- 2 : **Cdba**
- 3 : da C b
- 4 : a b d c

- a: 1 2 3 4
- **b**: 2 3 4 1
- G: 3 4 1 2
- d: 4 1 2 3

- 1 b Cad
- 2 : **cdb**a
- 3: dacb
- 4: a b d c

- a: 1 2 3 4
- **b**: 2 3 4 1
- d: 4 1 2 3

3: dacb

4: a b d c

C: 3 4 1 2

2 : Cdba 3 : daCb

4 : a b d c

G: 3 4 1 2

- 2 : **cdb**a
- 3 : dacb
- 4: a b d c

- a: 1 2 3 4
- **b**: 2 3 4 1
- d: 4 1 2 3

- 1 : bcad
- 2 : cdba
- 3: dacb
- 4: abdc

- a: 1 2 3 4
- b: 2 3 4 1
- d: 4 1 2 3

Summary

- Rotations partially ordered by order of exposure
- ullet Rotation poset computable in $O(n^2)$ time [Gusfield, Irving '89]
- Each elimination of rotation: girls improve, boys worsen

1: b c a a: 1 3 4 2: c d b b: 2 4 1 3: d a c c: 3 1 2 4: a b d d: 4 2 3

 1 : b c a
 a : 1 3 4

 2 : c d b
 b : 2 4 1

 3 : d a c
 c 3 1 2

 4 : a b d
 d 4 2 3

1: b G a a: 1 3 4 2: G d b b: 2 4 1 3: d a G G: 3 1 2 4: a b d d: 4 2 3

 1: b c a
 a: 1 3 4

 2: c d b
 b: 2 4 1

 3: d a c
 c: 3 1 2

 4: a b d
 d: 4 2 3

 1: b c a
 a: 1 3 4

 2: c d b
 b: 2 4 1

 3: d a c
 c: 3 1 2

 4: a b d
 d: 4 2 3

 1: b c a
 a: 1 3 4

 2: c d b
 b: 2 4 1

 3: d a c
 a: 1 2

 4: a b d
 d: 4 2 3

 1: b c a
 a: 1 3 4

 2: c d b
 b: 2 4 1

 3: d a c
 c: 3 1 2

 4: a b d
 d: 4 2 3

- 1 : **b c a d**
- 2 0060
- 3 : dacb
- 4: **abdc**

- a : 1 2 3 4
- **b**: 2 3 4 1
- C: 3 4 1 2
- d: 4 1 2 3

- 1 : **b 6 a d**
- 2 0000
- 3 0000
- 4: **abdc**
- a: 1 2 3 4
- **b**: 2 3 4 1
- G: 3 4 1 2
- d: 4 1 2 3

A subset S of rotations is closed if no arc points into S.

- 1 : **b 6 a d**
- 2 : 00 6 0
- 3 0000
- 4 : **abdc**
- a: 1 2 3 4
- **b**: 2 3 4 1
- d: 4 1 2 3

A subset S of rotations is closed if no arc points into S.

Closed subsets one-to-one correspond to stable matchings.

An arbitrary stable matching M can be obtained by

- starting with the boy-optimal stable matching, and
- successively eliminate an exposed rotation.

In critical profile $R(u, v, u^*, v^*)$:

An arbitrary stable matching M can be obtained by

- starting with the boy-optimal stable matching, and
- successively eliminate an exposed rotation.

An arbitrary stable matching M can be obtained by

- starting with the boy-optimal stable matching, and
- successively eliminate an exposed rotation.

An arbitrary stable matching M can be obtained by

- starting with the boy-optimal stable matching, and
- successively eliminate an exposed rotation.

An arbitrary stable matching M can be obtained by

- starting with the boy-optimal stable matching, and
- successively eliminate an exposed rotation.

In critical profile $R(u, v, u^*, v^*)$:

An arbitrary stable matching M can be obtained by

- starting with the boy-optimal stable matching, and
- successively eliminate an exposed rotation.

An arbitrary stable matching M can be obtained by

- starting with the boy-optimal stable matching, and
- successively eliminate an exposed rotation.

Three types of rotations: Implications, Forbidden, Necessary

- 1 : **bcad**
- 2 : 0000
- 4 : **abdc**
- a: 1 2 3 4
- **b**: 2 3 4 1
- **c** : 3 4 1 2
- d: 4 1 2 3

A subset S of rotations is closed if no arc points into S.

Closed subsets one-to-one correspond to stable matchings.

- 1 : **b**Cad
- 2 : 0000
- 4 : **abdc**
- a: 1 2 3 4
- **b**: 2 3 4 1
- C: 3 4 1 2
- d: 4 1 2 3

A subset S of rotations is closed if no arc points into S.

Closed subsets one-to-one correspond to stable matchings.

Scenario 1: Rematches come with a price.

Scenario 1: Rematches come with a price.

→ "Weak" blocking pairs not acted upon.

Scenario 1: Rematches come with a price.

→ "Weak" blocking pairs not acted upon.

Allowing weak blocking pairs: more freedom for secondary objectives.

Scenario 1: Rematches come with a price.

→ "Weak" blocking pairs not acted upon.

Allowing weak blocking pairs: more freedom for secondary objectives.

Definition

Let $d \in \mathbb{N}$. A matching M for a profile P is locally d-nearly stable if making at most d swaps in each preference list in P makes M stable.

Scenario 1: Rematches come with a price.

→ "Weak" blocking pairs not acted upon.

Allowing weak blocking pairs: more freedom for secondary objectives.

Definition

Let $d \in \mathbb{N}$. A matching M for a profile P is locally d-nearly stable if making at most d swaps in each preference list in P makes M stable.

Scenario 2: Tradeoff between distance to stability and secondary objectives.

Definition

Let $d \in \mathbb{N}$. A matching M for a profile P is globally d-nearly stable if making at most d swaps in P makes M stable.

Definition

The egalitarian cost of a matching M is

$$\sum_{\{u,v\}\in M} \mathsf{rank}_u(v) + \mathsf{rank}_v(u).$$

Near Stability: Example

- $2 \le i \le n-1$: $a_i : b_i b_{i+1}$

 - $1 \leq i \leq n$: x_i : y_i b_1 \cdots b_n

- - - $a_{n-1} | x_1 | \dots | x_n | a_n$

Near Stability: Example

Egal. cost: $(n-1)^2$

$$b_i$$
: a_{i-1} x_1 ...
 b_n : a_{n-1} x_1 ...
 y_i : x_i

Near Stability: Example

 $a_n = 0 - n - 1$ $b_n = n - 2 - \frac{x_n}{15/1} = 0 - 0$ Egal. cost: n + 1, 1 bp

Summary and Outlook

Robustness: More stringent than stable matchings

- Do not always exist
- $O(n^4)$ (but NP-hard for ties)

Summary and Outlook

Robustness: More stringent than stable matchings

- Do not always exist
- $O(n^4)$ (but NP-hard for ties)

Near stability: Less stringent, but close to stable matchings

- Always exist
 - → tradeoff between stability and egal. cost/perfectness
- Local: NP-hard, hard to approximate for 1 swap
- Global: NP-hard, hard to approximate,
 n^{O(d)} essentially optimal

Summary and Outlook

Robustness: More stringent than stable matchings

- Do not always exist
- $O(n^4)$ (but NP-hard for ties)

Near stability: Less stringent, but close to stable matchings

- Always exist
 - → tradeoff between stability and egal. cost/perfectness
- Local: NP-hard, hard to approximate for 1 swap
- Global: NP-hard, hard to approximate,
 n^{O(d)} essentially optimal

Potential follow-ups:

- How robust are boy/girl-optimal matchings in real data?
- Preference restrictions → tractable cases for near stability?