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Robust:
Agents may change preferences slightly.
Matching shall remain stable.

Matching stable

4

\

Nearly stable:
There are blocking pairs.
But low incentive to switch.

3/16



Scenario 1: Agents’ preferences are not quite accurate.

4/16



Scenario 1: Agents’ preferences are not quite accurate.

Scenario 2: Agents' preferences change over time.

4/16



Scenario 1: Agents’ preferences are not quite accurate.
Scenario 2: Agents' preferences change over time.

~» Aim: Stable matching in all nearby profiles

4/16



Scenario 1: Agents’ preferences are not quite accurate.
Scenario 2: Agents' preferences change over time.
~» Aim: Stable matching in all nearby profiles

Distance measure: A swap is the operation of switching two
consecutive agents in a preference list.

H 000 - H 000

4/16



Scenario 1: Agents’ preferences are not quite accurate.
Scenario 2: Agents' preferences change over time.
~» Aim: Stable matching in all nearby profiles

Distance measure: A swap is the operation of switching two
consecutive agents in a preference list.
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Definition (Robust Matching)
Let d € N. A matching M for a profile P is d-robust if M is
stable in each profile @ that is at most d swaps away from P.
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A matching M for a profile P is d-robust if M is stable in each
profile @ that is at most d swaps away from P.

Theorem

In O(n*) time we can compute a d-robust matching or correctly
report that there is none. (n = number of agents)

Proof outline

e O(n?) profiles ~ O(n*) critical profiles
e Modify rotation poset: add info from critical profiles

e Find closed subset of rotations in modified rotation poset
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Critical Profiles

Fix matching M that is not d-robust.

Profile P < d swaps _ Profile Q
M stable " M unstable

Blocking pair {u, v} for M in Q:

a; Q M(u)
vk Q Q M(v)

Profile P Profile Q

Critical profile R: Move only v, u before M(u), M(v), respectively.

Observation: M is d-robust iff M is stable in each critical profile.

After O(n*)-time preprocessing, testing whether two pairs together

in stable matching can be done in O(1) time.  [Gusfield, Irving '89]. 7/16
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Primer on Rotations
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Summary

e Rotations partially ordered by order of exposure

o

e Rotation poset computable in O(n?) time [Gusfield, Irving '89)]

e Each elimination of rotation: girls improve, boys worsen

s 8 =B
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Rotation Elimination Graph

Summary

Each stable matching can be reached by ﬂ
e starting with the boy-optimal stable matching, and

g e eliminating a sequence of exposed rotations
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Rotations and Action on Critical Profiles
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Rotations and Action on Critical Profiles

An arbitrary stable matching M can be obtained by
e starting with the boy-optimal stable matching, and

e successively eliminate an exposed rotation.

In critical profile R(u, v, u*, v*):

r
Three types of rotations: Implications, Forbidden, Necessary
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Near Stability

Scenario 2: Tradeoff between distance to stability and secondary
objectives.

Definition

Let d € N. A matching M for a profile P is globally d-nearly
stable if making at most d swaps in P makes M stable.

Definition
The egalitarian cost of a matching M is

Z rank,(v) + rank, (u).

{u,v}eM
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Near Stability: Example
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Summary and Outlook

Robustness: More stringent than stable matchings

e Do not always exist
e O(n*) (but NP-hard for ties)

Near stability: Less stringent, but close to stable matchings

e Always exist

~~ tradeoff between stability and egal. cost/perfectness
e Local: NP-hard, hard to approximate for 1 swap
e Global: NP-hard, hard to approximate,

n©(d) essentially optimal

Potential follow-ups:

e How robust are boy/girl-optimal matchings in real data?

e Preference restrictions ~~ tractable cases for near stability? 16,16



