
cba

Gesellschaft für Informatik (Hrsg.): SKILL 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 1

Network Navigation with Online Delays is PSPACE-complete

Thomas Depian1, Christoph Kern1, Sebastian Röder1, Manuel Sorge2, Soeren Terziadis2,
Markus Wallinger2

Abstract: In public transport networks disruptions may occur and lead to travel delays. It is thus interest-
ing to determine whether a traveler can be resilient to delays that occur unexpectedly, ensuring that they
can reach their destination in time regardless. We model this as a game between the traveler and a delay-
introducing adversary. We study the computational complexity of the problem of deciding whether the
traveler has a winning strategy in this game. Our main result is that this problem is PSPACE-complete.

Keywords: temporal paths; network navigation; robust connections

1 Introduction

According to Destatis, the total distance traveled by individuals in Germany using public
transport in 2022 amounted to 99 billion kilometers [22]. Finding the best public transport
route between a starting point and a destination is a well-researched topic and there are
well-known algorithms and datastructures for computing such routes [Ba16]. Once the route
has been determined, however, the traveler may encounter additional challenges. According
to rail company Deutsche Bahn, more than 13 % of the stops of their long-distance trains
were not within 15 minutes of the schedule in April 2023 [23]. Travelers thus regularly need
to board delayed trains, perhaps causing them to miss connecting trains later on. Therefore,
it is an interesting problem to find out whether a traveler can be resilient to such delays.
The problem formulation we are interested in here models the following question: Starting
from point 𝑠, is it possible to reach point 𝑧 in time 𝑡 where a delay of a connecting train may
occur unexpectedly at any changeover?

The above question can be modeled as a game between a traveler and a public transport
company. In each round of the game, the traveler arrives at some station in the public
transport network. Then the public transport company announces delays of the connections.
The traveler then decides on which connection to take next and so on, until either the
traveler reaches the destination 𝑧 or the time is up. To model realistic scenarios we impose
a delay-budget constraint on the public transport company, that is, the announced delays
may sum up to at most some fixed budget. Whether the traveler is resilient to delays is then
equivalent to whether they have a winning strategy, that is, whether it is possible to reach
1 [e11807882 |e11904675 |sebastian.roeder]@student.tuwien.ac.at, TU Wien, Austria
2 [manuel.sorge |sterziadis |mwallinger]@ac.tuwien.ac.at, Algorithms & Complexity Group, TU Wien, Austria

https://creativecommons.org/licenses/by-sa/4.0/

2 Depian, Kern, Röder, Sorge, Terziadis and Wallinger

the destination in time regardless of which delays are being announced in each round. We
call the resulting decision problem Robust Connection Game.

For very important appointments it may be useful to check beforehand whether they can
be reached even with potential delays. That is, we want to decide Robust Connection
Game computationally. Thus it is interesting to know its computational complexity. That is,
how complex is it to decide, given the schedule of the network, the start and destination as
well as the arrival time, whether the traveler has a winning strategy?

We show that Robust Connection Game can be solved with space bounded polynomially
in the input length, that is, Robust Connection Game is contained in PSPACE (see
Sect. 3). This in particular implies that it can be solved in time exponential in the input
length. However, we also prove that Robust Connection Game is PSPACE-hard, that is,
every problem in PSPACE can be reduced to Robust Connection Game in polynomial
time (see Sect. 4). This makes it unlikely that the problem can be solved efficiently in
general. While a negative result, our reduction highlights several features of the networks
that we exploit in showing hardness, see the conclusion in Sect. 5. It may be worthwhile to
check to which extent these features occur in real-world networks and, if not, whether their
absence can be exploited to obtain efficient algorithms. Due to space constraints, we defer
proofs for results marked by⋆ to a full version of the paper, see Ref. [De23].

Related work. We model Robust Connection Game on so-called temporal graphs,
that is, graphs in which edges are equipped with time information such as their starting
time and traversal time. Routing on temporal graphs was to our knowledge first explored
by Berman [Be96] and has in recent years gained considerable attention. Robustness of
temporal connectivity was herein mostly studied with respect to deletion of a bounded
number of time arcs or vertices, see, e.g., the overview by Füchsle et al. [Fü22a]. In terms
of delays in our context, we are aware of two works:

First, Füchsle et al. [Fü22a] study the problem of finding one route that is robust to a
bounded number of unit delays, regardless of when they occur. That is, checking whether
there exists a route that is feasible for all delays. In this model, the authors assume that
the traveler never reconsiders the rest of the route. The traveler thus potentially foregoes
better connections that open up after they experienced some delays already. The authors
then study the complexity of finding such routes and whether efficient algorithms can be
obtained if the number of delays or the network topology is restricted.

In the second work, Füchsle et al. [Fü22b] study finding for all possible delays whether
there exists a delay-tolerant route. In particular, they study the case where the delays may
occur unexpectedly and model the resulting problem as a game similar to what we do here.
However, there is a crucial difference: In Füchsle et al.’s model a delay of a connection
may be announced only during the time in which the traveler takes the connection. In
contrast, in our model the delays are announced before the traveler decides on the next

Network Navigation with Online Delays is PSPACE-complete 3

connection to take. We would argue that both models are relevant and thus we close a gap in
the literature. It also turns out that this seemingly small difference has an immense effect on
the computational complexity: In Füchsle et al.’s game model, deciding whether there is a
winning strategy is polynomial-time solvable and only becomes PSPACE-hard if we require
the route taken by the traveler to be a path (that is, no vertex is traversed twice). In contrast,
in our model the problem is PSPACE-hard without additional requirements on the route.

2 Preliminaries

In this paper, we work with temporal graphs, which build on top of static graphs. A
static graph is a (directed) graph 𝐺𝑠 = (𝑉𝑠 , 𝐴𝑠) consisting of a set of vertices 𝑉𝑠 and arcs
𝐴𝑠 ⊆ 𝑉𝑠×𝑉𝑠 . We denote an arc 𝑎 as a tuple 𝑎 = (𝑢, 𝑣), and call tail(𝑎) = 𝑢 the tail vertex, and
head(𝑎) = 𝑣 the head vertex of 𝑎. The graph 𝐺𝑠 contains multi-arcs, if there are two distinct
arcs 𝑎 = (𝑢, 𝑣), 𝑎′ = (𝑢, 𝑣) ∈ 𝐴𝑠 that have the same vertices 𝑢 and 𝑣 as their head and tail. We
allow multi-arcs but we prohibit self-loops, i. e., arcs of the form (𝑢, 𝑢) for 𝑢 ∈ 𝐺𝑠 . A walk
𝑊 = (𝑣1, . . . , 𝑣𝑘) in𝐺𝑠 is a sequence of 𝑘 , not necessarily pairwise distinct, vertices such that
we have (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐴𝑠 for 1 ≤ 𝑖 < 𝑘 . A walk is a path if the vertices are pairwise distinct.

Temporal Graphs. A temporal graph 𝐺 = (𝑉, 𝐸) is a static directed graph where we
replace arcs with temporal arcs. We denote a temporal arc 𝑒 as a tuple 𝑒 = (𝑢, 𝑣, 𝑡, 𝜆), where
tail(𝑒) = 𝑢 and head(𝑒) = 𝑣 denote the tail and head vertex, respectively, 𝑡 (𝑒) = 𝑡 denotes the
time label, and 𝜆(𝑒) = 𝜆 denotes the traversal time of 𝑒. The time label is a point in time, after
which 𝑒 is unavailable. The traversal time is the time span it takes to travel along the temporal
arc 𝑒. If a temporal arc 𝑒 is delayed by 𝛿, its time label increases by 𝛿. A temporal graph 𝐺

is (𝐷, 𝛿)-delayed, for 𝐷 ⊆ 𝐸 , denoted as 𝐺 (𝐷,𝛿) , if the temporal arcs in 𝐷 are delayed by
𝛿. Hence, 𝐺 (𝐷,𝛿) is the (𝐷, 𝛿)-delayed temporal graph version of the temporal graph 𝐺,
where we replace each temporal arc 𝑒 ∈ 𝐷 with 𝑒′ = (tail(𝑒), head(𝑒), 𝑡 (𝑒) + 𝛿, 𝜆(𝑒)). In
the literature this type of delay is usually denoted as starting delay [Fü22a]. For an arc 𝑒

in a temporal graph 𝐺 we denote by arr𝐺 (𝑒) = 𝑡 (𝑒) + 𝜆(𝑒) the arrival time of 𝑒 (at vertex
head(𝑒)) in the temporal graph 𝐺, i. e., 𝑡 (𝑒) and 𝜆(𝑒) are w.r.t. the temporal graph 𝐺. We
omit 𝐺 and just write arr(𝑒) if 𝐺 is clear from context. A temporal walk 𝑊 = (𝑣1, . . . , 𝑣𝑘)
in 𝐺 is a walk where we require in addition that for each temporal arc 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1, ·, ·),
1 ≤ 𝑖 < 𝑘 , in𝑊 we have arr(𝑒𝑖) ≤ 𝑡 (𝑒𝑖+1). Similar to the static version, we define a temporal
path to be a temporal walk with pairwise distinct vertices.

Throughout this paper, we assume 𝑡 (𝑒) > 0 and 𝜆(𝑒) > 0 for all temporal arcs 𝑒 and write 𝑡
and 𝜆 if 𝑒 is clear from context. Furthermore, we drop the prefix “temporal” if there is no
risk of confusion. Unless otherwise stated, we denote with 𝑛 the number of vertices and
with 𝑚 the number of arcs of the graph 𝐺, i. e., 𝑛 = |𝑉 | and 𝑚 = |𝐸 |.

4 Depian, Kern, Röder, Sorge, Terziadis and Wallinger

2.1 The Robust Connection Game

We now define the robust connection game. This is a round-based game between a traveler
and an adversary. Our goal is to model an online planning scenario, where delays are decided
on by the adversary only on arrival of the traveler at a vertex and the traveler may reconsider
his next steps. An instance of robust connection game is given by a tuple (𝐺, 𝑠, 𝑧, 𝑥, 𝛿) where
𝐺 = (𝑉, 𝐸) is a graph, 𝑠, 𝑧 ∈ 𝑉 , and 𝑥 and 𝛿 are positive integers. The meaning is as follows:

The traveler starts at the vertex 𝑠 at timestamp 1 and wants to reach the vertex 𝑧 in finitely
many rounds. Initially, we have 𝐷 = ∅ and the adversary has a budget of 𝑥. In each round,
the traveler is located at a vertex 𝑢 ∈ 𝐺 (𝐷,𝛿) at some timestamp 𝑡 and the adversary first
announces the delay of a subset 𝐷′ of the arcs. The delayed arcs are restricted to those
arcs that have 𝑢 as its tail and a time label 𝑡′ with 𝑡 ≤ 𝑡′ (arcs with 𝑡 > 𝑡′ could be allowed,
however the adversary does not gain an advantage from delaying such arcs). Furthermore, the
number of arcs that can be announced as delayed is limited to the remaining budget 𝑥 − |𝐷 |
of the adversary. The budget of the adversary is decreased after each round by the number
of arcs that are announced as delayed, i. e., by |𝐷′ |. Once the delays have been announced, a
delay of 𝛿 time steps is applied to the (newly) delayed arcs, that is, we compute 𝐺 (𝐷∪𝐷′ , 𝛿) .
Afterwards, the traveler has to move to a next vertex 𝑣 ≠ 𝑢, either through a delayed or not
delayed arc 𝑒, setting the current time 𝑡 to arr𝐺(𝐷∪𝐷′ , 𝛿) (𝑒). Once the traveler is at 𝑣, the next
round begins, i. e., the adversary can again announce the delay of a set 𝐷′ of arcs.

Each arc can be delayed at most once, i. e., once an arc has been announced as delayed and the
delay was applied, it can never be re-delayed again. The game ends if the traveler either reaches
𝑧, or if the traveler is stuck at a vertex 𝑢 ≠ 𝑧, that is, they reach 𝑢 at a time 𝑡 where there is no
further arc 𝑒, s.t., 𝑡 ≤ 𝑡 (𝑒). In the former case, the traveler wins the game, in the later case the
adversary wins. The traveler has a winning strategy, if the vertex 𝑧 can always be reached inde-
pendent of the announced delays. We define the corresponding decision problem as follows.

Robust Connection Game (RCG)
Input: A temporal graph 𝐺 = (𝑉, 𝐸), two vertices 𝑠, 𝑧 ∈ 𝑉 , and two positive
integers 𝑥, 𝛿, with 𝑥 ≤ |𝐸 |.
Question: Does the traveler have a winning strategy in the robust connection
game (𝐺, 𝑠, 𝑧, 𝑥, 𝛿)?

3 Solving Robust Connection Game in Exponential-Time and
Polynomial-Space

Let 𝐼 = (𝐺, 𝑠, 𝑧, 𝑥, 𝛿) be an instance of Robust Connection Game (RCG). We provide
in this section an exponential-time dynamic programming (DP) algorithm to check whether
the traveler has a winning strategy in 𝐼. Füchsle et al. [Fü22b] presented a polynomial-time

Network Navigation with Online Delays is PSPACE-complete 5

DP-algorithm for the related Delayed-Routing Game. While our result follows a similar
structure, the Robust Connection Game does not possess polynomially many game
states, which will also reflect in the running time.

For an instance 𝐼 of Robust Connection Game as above we describe a state of the game
with the tuple (𝑣, 𝑡, 𝐷), where 𝑣 ∈ 𝑉 is the vertex the traveler is currently at, 𝑡 ∈ N is the
current timestamp, and 𝐷 ⊆ 𝐸 denotes the set of delayed arcs. The remaining budget of the
adversary equals to 𝑦 := 𝑥 − |𝐷 |. Observe that we do not have to consider all possible points
in time but can restrict our attention to the set 𝑇 := {1, arr(𝑒), arr(𝑒) + 𝛿 | 𝑒 ∈ 𝐸)} of all
(delayed) arrival times at vertices. In the following, we make use of the concept of (delayed)
arcs available at a vertex 𝑢 ∈ 𝑉 at the timestamp 𝑡 ∈ 𝑇 . For the set of arcs 𝐸 in a (𝐷, 𝛿)-
delayed graph 𝐺 (𝐷,𝛿) , they are defined as 𝐸 𝑡

𝐺(𝐷,𝛿)
(𝑢) := {𝑒 ∈ 𝐸 | tail(𝑒) = 𝑢, 𝑡 ≤ 𝑡 (𝑒)}.

Since 𝛿 is a fixed value, we simply write 𝐸 𝑡
𝐷

.

To solve instance 𝐼, for each of the possible game states (𝑣, 𝑡, 𝐷), we denote in a table 𝐹

whether the traveler has a winning strategy (true), or not (false). Lemma 3.1 describes
how the states of our game depend on each other.

Lemma 3.1. Assuming that the empty disjunction evaluates to false, we have the following
equivalences for all 𝑣 ∈ 𝑉 \ {𝑧}, 𝑡 ∈ 𝑇 , and 𝑋 ∈ {𝐷 | 𝐷 ⊆ 𝐸, |𝐷 | ≤ 𝑥}.

𝐹 (𝑧, 𝑡, 𝑋) = true (1)

𝐹 (𝑣, 𝑡, 𝐷) =
∧

𝐷′⊆𝐸𝑡
𝐷
(𝑣)\𝐷

s.t. |𝐷′ |+|𝐷 | ≤𝑥

∨
𝑒∈𝐸𝑡

𝐷∪𝐷′ (𝑣)
𝐹

(
head(𝑒), arr𝐺(𝐷∪𝐷′ , 𝛿) (𝑒), 𝐷 ∪ 𝐷′

)
(2)

Proof. We first observe in Eq. (1) that the traveler is at the destination vertex 𝑧, i. e., the
game is over and the traveler wins the game. Hence, Eq. (1) is trivially correct. We proceed
with showing the correctness of Eq. (2). To do that, we show both directions explicitly and
build our arguments on the definition of the game given in Sect. 2.1.

Assume that the traveler is at timestamp 𝑡 at vertex 𝑣 ≠ 𝑧 and the arcs 𝐷 ⊆ 𝐸 have already
been delayed by the adversary. Therefore, we are in the game state (𝑣, 𝑡, 𝐷). Furthermore,
assume that the traveler has a winning strategy in this state, i. e., 𝐹 (𝑣, 𝑡, 𝐷) is true. This
means that no matter which additional arcs the adversary decides to delay, the traveler can
reach 𝑧. So assume that the adversary announces the delay of the arcs in 𝐷′, which by our
definition must have its tail at 𝑣. A winning strategy at (𝑣, 𝑡, 𝐷) consists, by the definition
of Robust Connection Game, of using one outgoing arc 𝑒 of 𝑣, available at 𝑡, after
being aware of the additionally delayed arcs. However, observe that if the winning strategy
at (𝑣, 𝑡, 𝐷) consists of moving in the presence of the additional delays 𝐷′ to the vertex
𝑢 = head(𝑒), for some arc 𝑒 available at 𝑣 at 𝑡, then the traveler must have a winning strategy in
the state

(
head(𝑒), arr𝐺(𝐷∪𝐷′ , 𝛿) (𝑒), 𝐷 ∪ 𝐷′

)
. That is, 𝐹

(
𝑢, arr𝐺(𝐷∪𝐷′ , 𝛿) (𝑒), 𝐷 ∪ 𝐷′

)
must

have been true as well. Since the set of announced delayed arcs 𝐷′ was chosen arbitrarily

6 Depian, Kern, Röder, Sorge, Terziadis and Wallinger

w.r.t. the constraints enforced by the game, the right side of Eq. (2) therefore correctly
evaluates to true. The other direction is deferred to a full version.

The game starts in the state (𝑠, 1, ∅) and, as a consequence of Lemma 3.1, the traveler has
a winning strategy iff 𝐹 (𝑠, 1, ∅) = true. In the following, we derive the time required to
compute 𝐹 (𝑠, 1, ∅) as well as the space consumption of our approach.

Lemma 3.2 (⋆). Our approach solves RCG in O(𝑛 · 𝑚2 · (𝑚 + 1)2𝑥) time.

Lemma 3.3. Our approach for RCG can be implemented to use O(𝑥 · 𝑚) space.

Proof. As we show in the proof of Lemma 3.2, there are O(𝑛 ·𝑚 · (𝑚 + 1)𝑥) possible game
states. Naïvely enumerating all possible game states would thus require an exponential
amount of space. To circumvent this, we first observe that, by Eq. (2), evaluating whether
the traveler has a winning strategy in the initial game state (𝑠, 1, ∅) results in a search tree
T , in which we enumerate in every odd level of T all possible subsets 𝐷′ of delayed arcs,
and in every even level of T the possible arcs the traveler can use. If we now use depth first
search (DFS) on T to compute 𝐹 (𝑠, 1, ∅), we only have to store the states of a single path
from the root of T to a leave of T at a time. If we fix the order in which we enumerate at
each internal node of T its children, the space requirement for DFS is linear in the depth
of T . We conclude the proof with observing that the depth of T is O(|𝑇 |) = O(𝑚), since
we increase at every other level in T the timestamp. Each game state requires O(𝑥) space,
since we need to store, in the worst case, that many delayed arcs.

Using Lemmas 3.2 and 3.3 we summarize the main result of this section in Theorem 3.4.

Theorem 3.4. Let 𝐼 = (𝐺 = (𝑉, 𝐸), 𝑠, 𝑧, 𝑥, 𝛿) be an instance of Robust Connection
Game with 𝑛 = |𝑉 | and 𝑚 = |𝐸 |. We can solve 𝐼 in O(𝑛 · 𝑚2 · (𝑚 + 1)2𝑥) time using
O(𝑥 · 𝑚) space. Therefore, Robust Connection Game is in PSPACE.

4 Robust Connection Game is PSPACE-hard

A quantified boolean formula (QBF) is a formula 𝜙 = 𝑄1𝑥1𝑄2𝑥2 . . . 𝑄𝑛𝑥𝑛𝜑with𝑄𝑖 ∈ {∃,∀}.
Deciding satisfyability of QBFs is well known to be PSPACE-complete. We show PSPACE-
hardness by providing a reduction from deciding satisfyability of QBFs. Similar to our
problem, deciding satisfiability can be formulated as finding a winning strategy for a 2-player
game. In the QBF Game, we have an ∃-player and a ∀-player. For each 𝑄𝑖 , if 𝑄𝑖 = ∃ the
∃-player selects a truth assignment for 𝑥𝑖 . Otherwise, if 𝑄𝑖 = ∀ the ∀-player selects a truth
assignment for 𝑥𝑖 . The ∃-player wins if after the 𝑛-th round 𝜑 has a satisfying assignment.
A QBF 𝜙 is satisfiable if and only if the ∃-player has a winning strategy [Sh19].

We provide a reduction from QBF Game to Robust Connection Game. Let 𝜙 =

𝑄1𝑥1𝑄2𝑥2 . . . 𝑄𝑛𝑥𝑛𝜑 be a QBF. We can safely assume that 𝜑 is in conjunctive normal

Network Navigation with Online Delays is PSPACE-complete 7

form, i. e., 𝜑 = 𝐶1 ∧ · · · ∧ 𝐶𝑚. We construct an instance 𝐼 = (𝐺, 𝑠, 𝑧, 𝑥, 𝛿) of the Robust
Connection Game from 𝜙. In particular we will create 𝐺 based on the order and type
of quantifiers in 𝜙 by placing a gadget (a specific subgraph) for every such quantifier. The
travel time of every arc 𝑒 in 𝐺 is uniformly set to 𝜆(𝑒) = 1. Additionally, we specifiy a start
vertex 𝑠 and an end vertex 𝑧 in 𝐺. Finally we set 𝛿 = 1 and the budget 𝑥 = 𝑛(𝑚 + |∀|) + 1,
where |∀| is the number of universally quantified variables. The significance of the value of
𝑥 will become obvious with the construction of 𝐺.

In this section we will first describe the structure of the created instance (in particular
the construction of 𝐺). We also state some observations about the forced behavior of the
traveler and the adversary, when playing the Robust Connection Game on 𝐼. Finally we
will describe the equivalences between the choices of the traveler/the adversary and the
∃-player/the ∀-player in the QBF Game.

4.1 Construction of the graph 𝐺

First let 𝑄𝑖 be the 𝑖-th quantifier, quantifying the variable 𝑥𝑖 . We place a gadget, which in our
case is a specific subgraph for 𝑄𝑖 . If 𝑄𝑖 is an existential quantifier we place the existential
gadgetG∃

𝑖
, otherwise we place the universal gadgetG∀

𝑖
. Every such gadget has an entry vertex

𝑠𝑖 and an exit vertex 𝑠𝑖+1, i.e., the exit vertex of a gadgetG𝑖 is the entry vertex of the next gadget
G𝑖+1, with the exception ofG𝑛, whose exit vertex 𝑠𝑛+1 is not an entry vertex, since no following
gadget exists. The starting time of all outgoing arcs of 𝑠𝑖 will be identical and denoted as 𝑡𝑠𝑖 .
We define 𝑡𝑠𝑖 = (𝑖 − 1) · 2(𝑚 + 2). Thus, the traveler needs to be able to traverse the variable
gadget in 2(𝑚+2) units of time or less to have a winning strategy, otherwise they arrive at the
next gadget and can not continue on from 𝑠𝑖+1. We will now first describe the construction
of the two gadget types in detail, before carrying on the with the further construction of 𝐺.

Existential variable gadget. We begin with the existential variable gadget G∃
𝑖

(see
Fig. 1a). For each clause𝐶 𝑗 , the gadget contains two vertex pairs 𝑢 𝑗

𝑖
, 𝑣

𝑗

𝑖
and 𝑢 𝑗

𝑖
, 𝑣

𝑗

𝑖
connected

via arcs 𝑒 𝑗

𝑖
= (𝑢 𝑗

𝑖
, 𝑣

𝑗

𝑖
, 𝑡𝑐 𝑗

, 1) and 𝑒
𝑗

𝑖
= (𝑢 𝑗

𝑖
, 𝑣

𝑗

𝑖
, 𝑡𝑐 𝑗

, 1) respectively. We will call 𝑒 𝑗

𝑖
a positive

and 𝑒
𝑗

𝑖
a negative arc. It is important to mention that 𝑡𝑐 𝑗

> 𝑡𝑠𝑛+1 , i.e., any positive or negative
arc of any gadget has a leaving time later than the outgoing arcs of 𝑠𝑛+1.

Furthermore, there are two distinct paths from 𝑠𝑖 to 𝑠𝑖+1, namely 𝑃𝑖 = ⟨𝑠𝑖 , 𝑢1
𝑖
, . . . , 𝑢𝑚

𝑖
, 𝑠𝑖+1⟩

and 𝑃𝑖 = ⟨𝑠𝑖 , 𝑢1
𝑖 , . . . , 𝑢

𝑚
𝑖 , 𝑠𝑖+1⟩. The traveler chooses one of these two paths by choosing

which of the two outgoing arcs at 𝑠𝑖 they traverse. The starting times of two consecutive
arcs of both 𝑃𝑖 and 𝑃𝑖 are always two time units apart, thus the traveler requires at most
2(𝑚 + 1) units of time to travel from 𝑠𝑖 to 𝑠𝑖+1. Lastly, at each vertex 𝑢

𝑗

𝑖
, 𝑢

𝑗

𝑖
there will be an

arc to 𝑧, starting at timestamp 𝑡𝑐 𝑗
+ 1. We will refer to such arcs as escape arcs.

8 Depian, Kern, Röder, Sorge, Terziadis and Wallinger

si

si+1

v1i v1i

v2i v2i

vmi vmi

u1
i

u2
i

um
i

tsn tsn

tsn + 2 tsn + 2

tsn + 4

tsn + 2m tsn + 2m

tsn + 4

u1
i

u2
i

um
i

e1i

e2i

emi

e1i

e2i

emi

tc1

tc2

tcm

tc1

tc2

tcm

tsn + 2m+ 2 tsn + 2m+ 2

tcm + 1

tc2 + 1

tc1 + 1 tc1 + 1

tc2 + 1

tcm + 1

(a) Existential variable gadget

si

si+1

v1i v1i

v2i v2i

vmi vmi

u1
i

u2
i

um
i

tsn tsn

tsn + 1 tsn + 2

tsn + 3

tsn + 2m− 1
tsn + 2m

tsn + 4

u1
i

u2
i

um
i

e1i

e2i

emi

e1i

e2i

emi

tc1

tc2

tcm

tc1

tc2

tsn + 2m+ 3

tsn + 2m+ 2

tcm + 1

tc2 + 1

tc1 + 1 tc1 + 1

tc2 + 1

tcm + 1

um+1
i

tcm+1 + 1

em+1
i

tcm+1

tsn + 2m+ 1

tcm

vm+1
i

(b) Universal variable gadget

Fig. 1: Depiction of a existential and universal variable gadget. Escape arcs to 𝑧 are depicted as
upwards pointing arcs.

Observation 4.1. If the traveler arrives at 𝑠𝑖 of G∃
𝑖

at a timestamp 𝑡 ≤ 𝑡𝑠𝑖 , the adversary
cannot prevent the traveler from arriving at 𝑠𝑖+1 at a timestamp 𝑡′ ≤ 𝑡𝑠𝑖+1 by delaying any
or all arcs of 𝑃𝑖 and 𝑃𝑖 .

Proof. The traveler can clearly take either of the two arcs (𝑠𝑖 , 𝑣1
𝑖
), (𝑠𝑖 , 𝑣1

𝑖), if they are delayed
or not. Since the arrival time of any arcs on the paths is always two units before the leaving
time of the next and 𝛿 = 1, the observation follows.

Observation 4.2. If the traveler arrives at a vertex 𝑣 𝑗

𝑖
of G∃

𝑖
, they can reach 𝑢 𝑗

𝑖
at a timestamp

𝑡 ≤ 𝑡𝑐 𝑗
+ 1 and subsequently reach 𝑧 if and only if, the adversary does not delay 𝑒

𝑗

𝑖
.

Proof. We can assume that the escape arc 𝑎 at 𝑢 𝑗

𝑖
is not delayed since delaying an escape arc

can never prevent the traveler from reaching 𝑧. The observation immediately follows from
the fact that 𝑡 (𝑒 𝑗

𝑖
) + 𝜆(𝑒 𝑗

𝑖
) = 𝑡 (𝑎) if 𝑒 𝑗

𝑖
is not delayed and 𝑡 (𝑒 𝑗

𝑖
) + 𝜆(𝑒 𝑗

𝑖
) > 𝑡 (𝑎) if it is.

The following Lemma 4.3 summarizes the properties of the gadget, taking into account
Observation 4.1 and Observation 4.2.

Lemma 4.3 (⋆). If the traveler arrives at 𝑠𝑖 of G∃
𝑖

at a timestamp 𝑡 ≤ 𝑡𝑠𝑖 , either they can
reach 𝑧 or they arrive at 𝑠𝑖+1 at a timestamp 𝑡′ ≤ 𝑡𝑠𝑖+1 via 𝑃𝑖 (or 𝑃𝑖) and the adversary has
delayed all 𝑚 arcs 𝑒 𝑗

𝑖
(or all 𝑚 arcs 𝑒 𝑗

𝑖
).

Network Navigation with Online Delays is PSPACE-complete 9

Universal variable gadget. The universal variable gadget G∀
𝑖

has a very similar structure
to the existential variable gadget with only two minor modifications (see Fig. 1b). First,
we add two additional vertices 𝑢𝑚+1

𝑖
and 𝑣𝑚+1

𝑖
which are connected by an arc 𝑒𝑚+1

𝑖
=

(𝑢𝑚+1
𝑖

, 𝑣𝑚+1
𝑖

, 𝑡𝑐 𝑗+1 , 1). Again, 𝑡𝑐 𝑗+1 > 𝑡𝑠𝑛+1 holds. There will be an escape arc from 𝑣𝑚+1
𝑖

leaving at timestamp 𝑡𝑐 𝑗+1 + 1. Furthermore, the node 𝑢𝑚+1
𝑖

is inserted into the path 𝑃𝑖 after
node 𝑢𝑚

𝑖
. The starting times of the arcs along path 𝑃𝑖 are adapted accordingly to guarantee

the two time unit difference between two consecutive arcs along the path. Secondly, the
starting times for all arcs along path 𝑃𝑖 , except for the first arc, are decreased by one unit.
Thus, the traveler requires at most 2(𝑚 + 1) + 1 units of time to travel from 𝑠𝑖 to 𝑠𝑖+1 along
path 𝑃𝑖 . Everything else remains the same.

Note that while Observation 4.2 directly translates to G∀
𝑖

, Observation 4.1 does not. Instead
we make the following observation.

Observation 4.4. If the traveler arrives at 𝑠𝑖 of G∀
𝑖

at a timestamp 𝑡 ≤ 𝑡𝑠𝑖 , the adversary
can prevent the traveler from traversing 𝑃𝑖 by delaying the arc (𝑠𝑖 , 𝑣1

𝑖
).

Note that the traversal of 𝑃𝑖 can still not be impeded by the adversary.

Similarly to the existential variable gadget, the traveler will either reach 𝑧 or 𝑠𝑖+1 after
traversing the gadget. However, in the latter case, three different outcomes may arise with
respect to the number of delayed edges. Note that one of the possibilities (Situation b in
Lemma 4.5) will lead to a forced loss of the traveler later on. We will argue this after
presenting all gadgets.

Lemma 4.5 (⋆). If the traveler arrives at 𝑠𝑖 of G∀
𝑖

at a timestamp 𝑡 ≤ 𝑡𝑠𝑖 , either they
can reach 𝑧 or the traveler reaches 𝑠𝑖+1 at timestamp 𝑡′ ≤ 𝑡𝑠𝑖+1 and one of the following
situations occurs:

(a) All 𝑚 + 1 positive arcs 𝑒 𝑗

𝑖
are delayed.

(b) All 𝑚 negative arcs 𝑒 𝑗

𝑖
are delayed.

(c) All 𝑚 negative arcs 𝑒 𝑗

𝑖
as well as the first arc in 𝑃𝑖 are delayed.

The construction of 𝐺 and the observed traversal behavior of the two players maps naturally
to an assignment of a variable 𝑥𝑖 to either true or false if the set of all positive or all negative
arcs in G𝑖 is delayed, respectively. We call the traversal of the traveler from 𝑠 until 𝑠𝑛+1,
the assignment phase. Now we continue with the remaining construction of 𝐺, which will
model the evaluation of this variable assignment. The remaining traversal of the traveler
starting at 𝑠𝑛+1 will accordingly be called the evaluation phase (see Fig. 2 and 4).

In the evaluation phase, we check whether the variable assignments implied by the choices
of the traveler and the adversary result in each clause 𝐶 𝑗 in 𝜑 to evaluate to true. This is
done by placing a gadget G𝐶

𝑗
for every clause 𝐶 𝑗 . The gadget G𝐶

𝑗
contains an entry node 𝑐 𝑗

and an exit node 𝑐 𝑗+1 (which is again the entry node for G𝐶
𝑗+1). The gadgets have to be

10 Depian, Kern, Röder, Sorge, Terziadis and Wallinger

ts1 = 0
ts2 tsn

tsn+1 tc1

Assignment phase Evaluation phase

tc2 tcm

tcm+1

2(m+ 2) 3

Fig. 2: Schedule of the reduction

cj

cj+1

ej1

...
...

ej2

ej3

ejm

ej1

ej2

ej3

ejm

tcj

tcj

tcj

tcj

tcj

tcj

tcj

tcj

tcj

vj1

vj2

vj3

vjm

uj
1

uj
2

uj
3

uj
m

vj1

vj2

vj3

vjm

uj
1

uj
2

uj
3

uj
m

tcj + 2
tcj + 2

tcj + 2

Fig. 3: Clause gadget

traversed in sequential order. The starting time of all outgoing arcs of 𝑐 𝑗 is identical and
denoted as 𝑡𝑐 𝑗

. We define 𝑡𝑐 𝑗
= 𝑡𝑠𝑛+1 + 1 + 3(𝑗 − 1) (three time units per clause).

The last vertex of the assignment phase, 𝑠𝑛+1, is connected to 𝑐1 by an arc with starting
time 𝑡𝑠𝑛+1 . Furthermore, there will be an additional arc leaving 𝑠𝑛+1 to new vertex 𝑣, also
leaving at timestamp 𝑡𝑠𝑛+1 . Vertex 𝑣 is connected by an escape arc to vertex 𝑧 with starting
time 𝑡𝑠𝑛+1 + 1. Lastly, the final exit node 𝑐𝑚+1 of the last clause gadget is connected to target
vertex 𝑧 with starting time 𝑡𝑐𝑚+1 .

Lemma 4.6 (⋆). When the traveler reaches 𝑐1, if the adversary has delayed less than
𝑛(𝑚 + |∀|) + 1 arcs, where |∀| is the number of universally bound variables, the traveler
was able to reach 𝑧 in the assignment phase.

Further if the game progresses to a state, in which the traveler reaches 𝑐1 and was so far
unable to reach 𝑧, the budget of the adversary must be 0 and due to Lemma 4.6 we will
assume that this is the case for the remainder of this reduction.

Clause gadget. The clause gadget for some clause 𝐶 𝑗 has an arc from 𝑐 𝑗 to 𝑣
𝑗

𝑖
(or 𝑣 𝑗

𝑖
) for

each literal 𝑥𝑖 (or ¬𝑥𝑖) in 𝐶 𝑗 with starting time 𝑡𝑐 𝑗
. Equivalently, there is an arc from 𝑢

𝑗

𝑖
(or

𝑢
𝑗

𝑖
) to 𝑐 𝑗+1 for each literal 𝑥𝑖 (or ¬𝑥𝑖) with starting time 𝑡𝑐 𝑗

+ 2. This forms a set of parallel
paths, each containing some arc 𝑒 𝑗

𝑖
(or 𝑒 𝑗

𝑖
). We will call the the set of arcs 𝑒 𝑗

𝑖
(or 𝑒 𝑗

𝑖
) the literal

Network Navigation with Online Delays is PSPACE-complete 11

s = s1

s2

s3

s4
c1

c2

c3

c4

z

Assignment Phase Evaluation Phase

s = s1

s2

s3

s4 s4
c1

c2

c3

c4

z

Fig. 4: Resulting graph 𝐺 from reducing formula 𝜙 = ∃𝑥1∀𝑥2∃𝑥3 ((𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨
¬𝑥3) ∧ (𝑥1 ∨ ¬𝑥2 ∨ 𝑥3)). On the right you see the two phases extracted from 𝐺.

arcs of G𝐶
𝑗

. Note that the set of literal arcs can include both positive and negative arcs of the
variable gadgets. The gadget is depicted in Fig. 3. Also note that if an arc 𝑎 = (𝑢 𝑗

𝑖
, 𝑐 𝑗+1) (or

(𝑢 𝑗

𝑖
, 𝑐 𝑗+1)) is delayed, the traveler will be stuck at 𝑐 𝑗+1. A direct consequence of Lemma 4.6

is that at the adversary will always have at least 1 delay remaining in the assignment phase.
This prevents the traveler from traversing a literal arc during the assignment phase and using
𝑎 to “jump ahead” to the evaluation phase, since the adversary could delay 𝑎. Conversely,
in the evaluation phase, the adversary has no budget left and cannot delay 𝑎.

Lemma 4.7 (⋆). If the traveler arrives at the entry node 𝑐 𝑗 of G𝐶
𝑗

at a timestamp 𝑡 ≤ 𝑡𝑐 𝑗

they can travel to the exit node 𝑐 𝑗+1 of G𝐶
𝑗

if and only if at least one literal arc of G𝐶
𝑗

has
been delayed.

With the construction of 𝐺 and therefore the whole instance 𝐼 concluded, we can move on
to the main statement of the reduction.

4.2 Proving PSPACE-completeness

Here we establish the connection and in fact the equivalence of a the graph traversal in the
Robust Connection Game and the variable assignments in the QBF Game.

Lemma 4.8 (⋆). There is a winning strategy for QBF Game for 𝜙 if and only if there is a
winning strategy for the traveler in the reduction instance of Robust Connection Game.

Since deciding if there is a winning strategy in the QBF Game is PSPACE-hard, we
conclude the following theorem from Lemma 4.8 and Theorem 3.4.

Theorem 4.9. Robust Connection Game is PSPACE-complete.

12 Depian, Kern, Röder, Sorge, Terziadis and Wallinger

5 Conclusion

We close with directions for future research: First, the running time for Robust Connec-
tion Game that we obtain in Theorem 3.4 has the form 𝑛 · 𝑚𝑂 (𝑥) , where 𝑛 is the number
of vertices, 𝑚 the number of temporal arcs, and 𝑥 the number of delayed arcs. It would
be interesting to know whether it is possible to remove the dependency of the exponent
on 𝑥. That is, is there an algorithm with running time 𝑓 (𝑥) · (𝑛 · 𝑚)𝑂 (1)? It would also be
interesting to restrict our focus to routes with few changeovers. That is, if we require the
traveler to reach his destination with a small number 𝑐 of changeovers, is it possible to decide
whether they have a winning strategy in (𝑛 · 𝑚) 𝑓 (𝑐) time or even 𝑓 (𝑐) · (𝑛 · 𝑚)𝑂 (1) time?

References

[22] Statistisches Bundesamt Deutschland - GENESIS-Online: Ergebnis 46181-0005,
Accessed: 25.05.2023, Statistisches Bundesamt Deutschland, 2022, url: https:
//www-genesis.destatis.de/genesis/online?sequenz=tabelleErgebnis&

selectionname=46181-0005#abreadcrumb.
[23] Erläuterung Pünktlichkeitswerte April 2023, Accessed: 25.05.2023, Deutsche

Bahn, 2023, url: https : / / www . deutschebahn . com / de / konzern /
konzernprofil/zahlen_fakten/puenktlichkeitswerte-6878476.

[Ba16] Bast, H.; Delling, D.; Goldberg, A. V.; Müller-Hannemann, M.; Pajor, T.;
Sanders, P.; Wagner, D.; Werneck, R. F.: Route Planning in Transportation
Networks. In: Algorithm Engineering - Selected Results and Surveys. Vol. 9220,
LNCS, pp. 19–80, 2016.

[Be96] Berman, K. A.: Vulnerability of scheduled networks and a generalization of
Menger’s Theorem. Networks 28/3, pp. 125–134, 1996.

[De23] Depian, T.; Kern, C.; Röder, S.; Sorge, M.; Terziadis, S.; Wallinger, M.: Network
Navigation with Online Delays is PSPACE-complete./, 2023, url: https:
//manyu.pro/assets/delay-robust-routing.pdf.

[Fü22a] Füchsle, E.; Molter, H.; Niedermeier, R.; Renken, M.: Delay-Robust Routes
in Temporal Graphs. In: Proc. 39th International Symposium on Theoretical
Aspects of Computer Science (STACS ’22). Vol. 219. LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 30:1–30:15, 2022.

[Fü22b] Füchsle, E.; Molter, H.; Niedermeier, R.; Renken, M.: Temporal Connectivity:
Coping with Foreseen and Unforeseen Delays. In: Proc. 1st Symposium on
Algorithmic Foundations of Dynamic Networks (SAND ’22). Vol. 221. LIPIcs,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 17:1–17:17, 2022.

[Sh19] Shukla, A.; Biere, A.; Pulina, L.; Seidl, M.: A Survey on Applications of
Quantified Boolean Formulas. In: Proc. 31st IEEE International Conference on
Tools with Artificial Intelligence (ICTAI ’19). IEEE, pp. 78–84, 2019, isbn:
978-1-72813-798-8.

https://www-genesis.destatis.de/genesis/online?sequenz=tabelleErgebnis&selectionname=46181-0005#abreadcrumb
https://www-genesis.destatis.de/genesis/online?sequenz=tabelleErgebnis&selectionname=46181-0005#abreadcrumb
https://www-genesis.destatis.de/genesis/online?sequenz=tabelleErgebnis&selectionname=46181-0005#abreadcrumb
https://www.deutschebahn.com/de/konzern/konzernprofil/zahlen_fakten/puenktlichkeitswerte-6878476
https://www.deutschebahn.com/de/konzern/konzernprofil/zahlen_fakten/puenktlichkeitswerte-6878476
https://manyu.pro/assets/delay-robust-routing.pdf
https://manyu.pro/assets/delay-robust-routing.pdf

Network Navigation with Online Delays is PSPACE-complete 13

A Additional Material for Section 3

A.1 Rest of the Proof of Lemma 3.1

Now assume that the right hand side of Eq. (2) is true and we are again
in the game state (𝑣, 𝑡, 𝐷). Then for every possible subset 𝐷′, the expression∨

𝑒∈𝐸𝑡
𝐷∪𝐷′ (𝑣) 𝐹 (head(𝑒), arr𝐺(𝐷∪𝐷′ , 𝛿) (𝑒), 𝐷 ∪ 𝐷′) is true. In particular this means, that

there exists an arc 𝑒, such that there is a winning strategy in the game state
(head(𝑒), arr𝐺(𝐷∪𝐷′ , 𝛿) (𝑒), 𝐷 ∪ 𝐷′). Thus for every possible subset 𝐷′ there exists an
arc 𝑒 to traverse for the traveler, s.t. they have a winning strategy in the resulting game state.
In other words, they have a winning strategy in (𝑣, 𝑡, 𝐷) and 𝐹 (𝑣, 𝑡, 𝐷) is true.

A.2 Proof of Lemma 3.2

We first derive the number of game states that we have to evaluate. Clearly, |𝑇 | = O(𝑚)
holds. For each 0 ≤ 𝑦 ≤ 𝑥, the number of possible sets 𝐷 ⊆ 𝐸 of size 𝑦, that describe the
delayed arcs, is

(|𝐸 |
𝑦

)
. In total, this is equal to

𝑥∑︁
𝑦=0

(
𝑚

𝑦

)
≤ (𝑚 + 1)𝑥 ,

where the upper bound follows from the fact that we can add a dummy element that will be se-
lected the remaining 𝑥−𝑦 times. Therefore, there are O(𝑛 ·𝑚 · (𝑚 + 1)𝑥) possible game states.

In each such game state (𝑣, 𝑡, 𝐷), we evaluate up to (𝑚 + 1)𝑥 possible sets 𝐷′ that the adver-
sary could choose. For each such set 𝐷′ we look up |𝐸 𝑡

𝐷∪𝐷′ (𝑣) | = O(𝑚) other table entries.
Note that, for evaluating arr𝐺(𝐷∪𝐷′ , 𝛿) (𝑒) we do not need to compute the (𝐷 ∪ 𝐷′, 𝛿)-delayed
graph, but can just check whether 𝑒 ∈ 𝐷 ∪ 𝐷′ holds or not. Therefore, we can determine
whether the traveler has a winning strategy in the state (𝑣, 𝑡, 𝐷) in O(𝑚 · (𝑚 + 1)𝑥) time.
Combining the above yields the claimed running time of O(𝑛 · 𝑚2 · (𝑚 + 1)2𝑥).

B Additional Material for Section 4

B.1 Proof of Lemma 4.3

By Observation 4.1, we know that the arrival at 𝑠𝑖+1 can not be prevented. The traveler
has to start by taking one of the two arcs (𝑠𝑖 , 𝑣1

𝑖
), (𝑠𝑖 , 𝑣1

𝑖). Assume, w.l.o.g., they choose
(𝑠𝑖 , 𝑣1

𝑖
). From there by Observation 4.2 we know that either the traveler can reach 𝑧 or the

adversary delays an arc 𝑒
𝑗

𝑖
. This repeats 𝑚 times in total until the traveler reaches 𝑠𝑖+1.

14 Depian, Kern, Röder, Sorge, Terziadis and Wallinger

B.2 Proof of Lemma 4.5

Proof. At 𝑠𝑖 the adversary has the option to delay the first arc in 𝑃𝑖 . If the adversary does
not delay the first arc of 𝑃𝑖 , the traveler can choose between path 𝑃𝑖 and 𝑃𝑖 . If they choose
𝑃𝑖 they would arrive at 𝑠𝑖+1 at timestamp 𝑡𝑠𝑖 + 2𝑚 + 2, delaying all remaining 𝑚 + 1 arcs 𝑒 𝑗

𝑖

(Situation a). If they instead choose path 𝑃𝑖 , they would arrive at timestamp 𝑡𝑠𝑖 + 2𝑚 + 1,
delaying all 𝑚 arcs 𝑒

𝑗

𝑖
(Situation b). If the adversary does delay the first arc of 𝑃𝑖 , by

Observation 4.4, the traveler can not travel along 𝑃𝑖 . Thus, the traveler would go along 𝑃𝑖

and arrive at 𝑠𝑖+1 at timestamp 𝑡𝑠𝑖 + 2𝑚 + 1, delaying all 𝑚 arcs 𝑒 𝑗

𝑖
(Situation c). We observe

that regardless of the path choice, the adversary will arrive at 𝑠𝑖+1 before 𝑡𝑠𝑖+1 .

B.3 Proof of Lemma 4.6

For all existential gadgets, by Lemma 4.3, 𝑚 arcs have been delayed or the traveler was able
to reach 𝑧. For all universal gadgets, according to Lemma 4.5, either 𝑚 + 1 (Situations a and
c) or 𝑚 arcs (Situation b) have been delayed, or the traveler was able to reach 𝑧. If for all
universal gadgets Situations a or c occurred, we are done. Assume that Situation b occurred
at least once. In that case, less than 𝑛(𝑚 + |∀|) arcs have been delayed when the traveler
arrives at node 𝑠𝑛+1. The adversary can now delay both outgoing arcs from 𝑠𝑛+1, leaving the
adversary either stranded at vertex 𝑣 or 𝑐1. Choosing Situation b therefore loses the game
for the traveler. Thus the traveler will never choose Situation b and exactly 𝑛(𝑚 + |∀|) arcs
have been delayed in the assignment phase.

This leaves one delay remaining when the traveler arrives at node 𝑠𝑛+1. If adversary does
not delay the arc to vertex 𝑣, the traveler can move to 𝑣 and take the escape arc. Therefore
the adversary spends the remaining budget on delaying the arc (𝑠𝑛+1, 𝑣), the traveler moves
to vertex 𝑐1 and 𝑛(𝑚 + |∀|) + 1 arcs have been delayed.

B.4 Proof of Theorem 4.7

In order to travel from 𝑐 𝑗 to 𝑐 𝑗+1, the traveler has to pick one of the parallel paths.
W.l.o.g. suppose there exits a literal arc 𝑒 𝑗

𝑖
of G𝐶

𝑗
which has been delayed. Then, the traveler

chooses the path that contains this arc and arrives at 𝑣 𝑗

𝑖
at timestamp 𝑡𝑐 𝑗

+ 1. Since 𝑒
𝑗

𝑖
has

been delayed, instead of departing at timestamp 𝑡𝑐 𝑗
it leaves at timestamp 𝑡𝑐 𝑗

+ 1, making the
arc traversable for the traveler. When the traveler arrives at vertex 𝑢

𝑗

𝑖
, it can move to vertex

𝑐
𝑗

𝑖
and arrive there at timestamp 𝑡𝑐 𝑗

+ 3 ≤ 𝑡𝑐 𝑗+1 . Now suppose that no literal arc is delayed.
Assume the traveler picks an arbitrary path. W.l.o.g. this path contains the literal arc 𝑒

𝑗

𝑖
.

When the traveler arrives at vertex 𝑣
𝑗

𝑖
at timestamp 𝑡𝑐 𝑗

+ 1, there is no arc leaving 𝑣
𝑗

𝑖
that

the traveler can reach in time since 𝑒
𝑗

𝑖
is not delayed and already departs at timestamp 𝑡𝑐 𝑗

.
The traveler would thus be stuck at vertex 𝑣

𝑗

𝑖
and never reach 𝑐 𝑗+1.

Network Navigation with Online Delays is PSPACE-complete 15

B.5 Proof of Lemma 4.8

⇒: Assume the ∃-player has a winning strategy for the QBF Game. In particular this means
that there is a decision tree for the ∃-player to choose a value for every existentially
quantified variable, given the truth values of all previously quantified variables, s.t.,
the resulting variable assignment satisfies 𝜑. The corresponding winning strategy
for the traveler in the Robust Connection Game follows every decision in this
decision tree at every G∃

𝑖
gadget. If the decision is to set the variable 𝑥𝑖 to true, the

traveler chooses the 𝑃𝑖 path, otherwise they choose the 𝑃𝑖 path. At every G∀
𝑖

gadget,
if the adversary delays the first arc of the 𝑃𝑖 path, the traveler chooses the 𝑃𝑖 path,
otherwise they chooses the 𝑃𝑖 path. Since the variable assignment in the QBF Game
satisfies every clause in 𝜑, at least one literal of the clause is true and therefore at
least one literal arc of every clause gadget is delayed. By Lemma 4.7 the traveler can
traverse every clause gadget and reach 𝑧.

⇐: Now assume the traveler has a winning strategy for the Robust Connection Game.
In particular this means, the traveler always chose the “correct” path in every G∀

𝑖

gadget, depending on the choice of the adversary to delay the first arc of 𝑃𝑖 or not.
Moreover, for every such choice the traveler could choose one of the two available
paths 𝑃𝑖 or 𝑃𝑖 in every G∃

𝑖
gadget, s.t., they could traverse every clause gadget to

reach 𝑧. Since by Lemmas 4.3 and 4.5 only positive or negative arcs, but never a
mixture of both can be delayed in every variable gadget, we can follow all decisions
of the traveler and set the variable 𝑥𝑖 to true if the traveler would choose path 𝑃𝑖 and
to false otherwise. Finally, since the traveler could traverse every clause gadget and by
Lemma 4.7, there is at least one delayed literal arc in every clause gadget. Therefore,
the resulting variable assignment satisfies 𝜑 and the ∃-player has a winning strategy.

